Relational Algebra and Relational Calculus :
Theoretical Basis of Database

Relational Calculus [basis for QBE]
Calculus is higher order; declarative; no order of operations; defines RESULT.

Tuple relational calculus
{t | COND(t)} all tuples for which COND(t) is true

AND, OR, NOT

Quantifiers:

Such that | SuchThat
for every v ForEvery
there exits 3 ThereExists
member of & IN

Free and bound:

A BOUND tuple is within a QUANTIFIER.

Only free tuples (that are not bound) should only appear to the left of | (such that)
For example, {t| (t IN EMPLOYEE) AND (t.name="Fred’)}

Variables should normally be BOUND.

Free tuples are usually what you want as a result of your query.

Free tuples should only appear to the left of | in { (x,y)| (description of x and y)}
{t(NOT(EMPLOYEE))} ***BAD****

Formulas:

(well formed formula, or wff)

A FORMULA is either true or false.

R(t), (R is arelation, tis a tuple,) is an ATOM that is either true or false.
Such an ATOM is a FORMULA.

If t1 and t2 are tuple variables, A and B are attributes:

T1.A=t2.B (or < <=>>=<>) is a formula.

If F1 and F2 are formulas, then:

F1AND F2, F1 OR F2, NOT(F1) are formulas.

If F is a formula, then so is (¥ t)(F) and (3 t)(F) (t is a tuple variable)

Technically, Tuple Relational Calculus allows only tuple variables;
We will focus on Tuple Relational Calculus.
(Domain relational Calculus allows values of attributes.)

[Allowed to say ForEvery, ThereExists, SuchThat]
{b,t|(¥ b)(t)(formula)}

(31)(F) is TRUE IFF(if and only if) it is true for at least ONE tuple in F.
(Yt)(F) is TRUE IFF it is true for ALL tuples in F.

(Y1)(P(t)) is defined to be equal to: NOT((3 t)(NOT(P(t)))
((31)(NOT(P()) is defined to be equal to: NOT((¥ t)(P(t)))

Rules of logic, such as DeMorgan’s Laws, apply:
(Negating OR gets you an AND; negating AND gets you an OR)

IT IS (tautologically) TRUE THAT:
NOT(A and B) == NOT(A) or NOT(B)
NOT(Aor B) ==NOT(A) and NOT(B)

(Y t)(P() AND Q(t)) is defined to be equal to: NOT((It)(NOT(P(t) OR NOT(Q(t))))
(Vt)(P(t)OR Q(t)) is defined to be equal to: NOT((3 t)(NOT(P(t) AND NOT(Q(1)))
((31)(NOT(P(t) OR Q(t)) is defined to be equal to: NOT((¥ t)(P(t)) AND Q(t))
((31)(NOT(P(t) AND Q(t)) is defined to be equal to: NOT((¥ t)(P(t)) OR Q(t))

P=>Q means implied; is defined to be equal to NOT(P) OR Q

BE CAREFUL with UNIVERSAL QUANTIFIERS:
{tiNOT(EMPLOYEE(t))} is not SAFE

It yields an infinite number of tuples!

(You should always specify what t IS)

This is, technically, an assertion that might be true or might be false:
(Y t)(employee(t)->(salary(t)>0))

Queries are in the form of a set.

{e [(EMPLOY(e) }

(t.name, t.address | EMPLOY (1)}
(t.name, t.address | EMPLOY (t) AND

(3d) (DEPARTMENT(d)
AND (d.deptname="Research’' JAND (d.deptnumber=t.deptno))}

'b' for boss 'e' for employee
{b.name,e.name|(EMPLOY (e) AND EMPLOQOY (b) AND (e<>b) AND SUPER(b,e)) }

{b.name|((¥ €)((EMPLOY (b) AND EMPLOY(e) — NOT(SUPER((e,b)))))))

Star Trek example
s for series a for actor(the star table) p person

{a.role,s| (STAR(a) AND Series(s) AND (¥ s)(3 p)((p.series=s.series) AND (p.role=a.role))}

Practice:

EMPLOQOY (name, id, dept)
DEPT (name, number, ...)
WORKSON (empnum, projnum)
PROJECT (name, num, dept)

e employer

d department

p project

List the name and address of all employees who work for the research department.

List names of employees who work on all projects controlled by department 5

Relational Calculus Examples
List the name and address of all employees who work for the Research Department.

{t.Fname, t.Lname, t.Address | EMPLOYEE(t) AND
(ThereExists d} (DEPARTMENT(d) AND (d.Dname="Research’) AND (d.Dnumber = t.Dno))

¥

For every project in Stafford, list project number, department, manager’s name
{p.Pnumber, p.Dnum, m.Lname |
PROJECT(p) AND EMPLOYEE(m) AND (p.Plocation="Stafford’) AND
(ThereExists d)(DEPARTMENT(d) AND (p.Dnumber = d.Dnumber) AND
(d.Mgr_ssn =m.Ssn))}

Each employee who works for SOME project controlled by department 5

{e.Lname, e.Fname | EMPLOYEE(e) AND
(ThereExists p) (ThereExists w) (PROJECT(p) (WorksOn w) AND (p.dNum=5) AND
(w.Essn=e.SSn) AND (p.Pnumber = w.Pno))

}

Stark Trek:
List all roles that appear in all series
{r.roleName) | (role® AND (ForEvery s) Series(s) ->
(ThereExists a) (APPEAR(a) AND
(a.role = r.roleName) AND a.series = s.seriesName) })
}
ForEvery corresponds to NOT ThereExists NOT
ThereExits corresponds to NOT ForEvery NOT

